Dynamic Light Scattering (DLS) Applications

Proprietary and Confidential, Copyright © 2013-2022, All rights reserved

Introduction: Dynamic Light Scattering

- DLS and SLS capabilities
- 96, 384, 1536 plate compatible
- Measurement range R_h: 0.5 1000 nm M_w: 1 – 1000 kDa
- Temperature control: 4 85 °C

Applications: Dynamic Light Scattering

■ ■ ATUM

Application 1A: Hydrodynamic radius

120 1,200 100 1,000 80 800 mAU 60 600 40 400 20 200 7 10 0 2 3 4 5 6 8 9 11 12 Time [min] MW Regression 🔶 Standard Proteins RT Calc. MW (kDa) Area % Symmetry 4.963 0.72 425 2.28 6.291 97.72 104 0.7

HPLC-SEC

DLS can be used as a quality check to measure particles/aggregates larger than HPLC-SEC's size range (sub-visible particles)

Complementary to HPCL-SEC for aggregate analysis

Application 1B: Hydrodynamic radius

1,200 90 80 1,000 70 60 800 50 600 40 30 (kDa) 400 20 200 10 0 7 8 9 10 11 12 0 2 -3 4 5 6 Time [min] MW Regression 🔶 Standard Proteins RT Calc. MW (kDa) Area % Symmetry 3.916 1.190 0.86 1.11 4.584 587 72.73 0.97 20.31 5.43 240 0.6 6.633 67 6.1 0.77

HPLC-SEC

DLS can be used as a quality check to measure particles/aggregates bigger than HPLC-SEC's size range (sub-visible particles)

Complementary to HPCL-SEC for aggregate analysis

Application 2A: Colloidal Stability (k_D and A₂) Relative molecule ranking of self-association propensity

DLS can be used to rank molecules for their propensity to self-aggregate.

Two parameters (kD and A2) can be negative (self-association), neutral (no interaction) or positive (repulsive forces).

Application 2B: Colloidal Stability Relative formulation buffer ranking for self-association propensity

Buffer pH	k _D (x10^-9)
4	-3.0
5	0.7
6	-1.4
7	-6.9
8	-5.4

Ideal formulation buffer is expected to arrest self-interactions thereby reducing aggregation propensity. Measurement of k_D as a function of formulation buffer can be used for relative ranking.

Application 3A: Thermal Stability Relative molecule ranking for T_{aggregation}

Tagg is the temperature at which a protein begins aggregating (Tonset). Here, it is defined as the temperature at which the hydrodynamic radius deviates by 10% from the baseline

Application 3B: Thermal Stability Relative formulation buffer ranking for T_{aggregation}

mAb2

Buffer pH	T _{agg}	T _m (DSF)
	(10 mg/ml)	(0.5 mg/ml)
4	59.7	67.5
5	68.3	68.5
6	68.5	68.5
7	67.7	68.5
8	67.0	68.5

Ideal formulation buffer is expected to stabilize the protein, thereby increasing the Tagg. Measurement of Tagg as a function of formulation buffer can be used for relative ranking.

Tm by DSF maybe limited by resolution in some cases.

ÊATUM