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Protein Potential
A new type of relationship is bringing fresh potential 
to bioengineering, combining artificial intelligence and 
synthetic biology to give promising protein pharmaceuticals

By Dr Claes 
Gustafsson  
at ATUM 

Structure-activity relationship 

(SAR) studies have been 

instrumental in bringing small 

molecule drugs to the market over 

the past few decades. However, as 

protein pharmaceuticals replace 

small molecules as the primary 

modality for drugs, SAR as we 

know it is being usurped by the 

new, technology-driven sequence-

activity relationship. This has 

several unique properties that 

make it ideal for machine learning 

approaches to engineering new 

protein pharmaceuticals, and the 

time to exploit this bioengineering 

pathway is now.

SAR

SAR and its mathematical sibling, 

quantitative SAR (QSAR), have 

long been used to describe the 

relationship between the chemical 

properties of a small molecule 

and its corresponding functional 

activity. It is based on the premise 

that, given a sufficiently large 

dataset of related molecules and 

their quantitated functional output 

(eg binding to a target protein), 

we can build QSAR models that 

predict the functional output of 

similar molecules not present in 

the dataset. SAR is often also used 

to predict new molecules that are 

improved over the molecules in 

the training set and can also be 

used for classification applications.

First established in the 1960s 

by Professor Corwin Hansch at 

Pomona College in California 

and his collaborators, the QSAR 

concept has since become the 

gold standard. Today, QSAR is 

taught in undergraduate level 

chemistry classes and commonly 

used in drug discovery and toxicity 

prediction. The success and 

influence of QSAR is evident from 

the number of publications on 

QSAR in PubMed – approximately 

800 per year since about 2008 

(see Figure 1). The majority of 

these publications are focused on 

applying QSAR to small molecule 

drug discovery. 

Biotechnology is revolutionising 

current drug discovery. Small 

molecules are no longer where  

the drug industry is investing  

its time and money. Instead,  

over the past few years we  

have seen a tidal 

wave of protein 

pharmaceuticals 

arrive at the 

marketplace.  

In 2016, 7  

of the top  

10 best-

selling drugs 

were protein 
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pharmaceuticals, and sales 

of biologics reached a record 

high of $163 billion, with nearly 

two-thirds of all biologics sales 

attributable to antibodies. Just 

six years earlier, not a single 

one of the top 10 drugs was a 

protein pharmaceutical (see 

Table 1). Proteins in the form 

of natural antibodies, enzymes 

and engineered new formats 

are expected to be the primary 

modality of therapeutic drugs  

for the foreseeable future.

Also changing is the methodology; 

no longer is QSAR a design tool 

for protein pharmaceuticals. 

Protein engineering has instead 

been approached from two 

diametrically opposed directions: 

rational design and directed 

evolution. The former attempts 

to understand protein structure 

and function from a mechanistic 

level so that any desired change 

can be affected by calculations 

from first principles. This is usually 

accomplished by building a 

crystal structure of the protein 

drug bound to the ligand (a non-

trivial task), followed by rationally 

designed mutations and the 

testing of these until the required 

molecular behaviour is achieved. 

Instead, directed evolution 

attempts to find a desired solution 

by testing a large number of 

semi-randomly generated 

variants, typically using various 

evolutionary-based algorithms. 

Because both rational design 

and directed evolution (in their 

many alternative formats) have 

shortcomings and advantages, 

both are now often used in 

conjunction for improved  

success rate.

Protein Pharmaceuticals 

Instead of using small molecules’ 

quantitative structure parameters 

as drug-derived variables, protein 

pharmaceuticals allow for a 

defined qualitative measure in 

using the primary amino acid 

sequence itself as variable. Even 

though the available protein 

sequence space is, in principle, 

infinite, every residue in a protein 

is limited to only 1 of 21 available 

qualitative options (the 20  

natural amino acids and the lack  

of an amino acid). Unlike the 

typical quantitative descriptors 

in small molecule QSAR (eg size, 

charge, polarity and so on) where 

infinite alternatives are available, 

protein sequences deal with 

a predefined set of qualitative 

descriptors. From a sequence-

space exploration standpoint, the 

21 options at any residue provide 

a finite number of possibilities 

to explore – not counting post-

translational modifications. 

Arguably, that finite space is large. 

With 21 options at each residue in 

2010 2016

1 Nexium Humira

2 Lipitor Harvoni

3 Plavix Enbrel

4 Advair Diskus Remicade

5 OxyContin Rituxan

6 Abilify Revlimid

7 Singulair Avastin

8 Seroquel Herceptin

9 Crestor Lantus

10 Cymbalta Prevnar

Figure 1: 

Number of 

publications 

in PubMed 

discussing QSAR

                 Directed 
evolution attempts 
to nd a desired 
solution y testing 
a large num er 
o  semi randomly 
generated variants  
typically using various 
evolutionary ased 
algorithms 

PubMed publications on QSAR

Table 1: 

Top 10 selling 

drugs 2010 and 

2016. Protein 

pharmaceuticals 

are marked in 

yellow
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a protein, the space is 21^N, where  

N is the number of residues in the 

protein. Despite the large possible 

protein sequence space, almost 

all of this is non-functional for 

any given property, in most cases 

failing even to fold into a defined 

structure. Naturally occurring 

proteins that are folded and have 

fitness for one or more functional 

property occupy extremely small 

regions of this space, much like tiny 

islands within the total available 

Pacific Ocean of sequence space.

Building Better Biology

So how do we find the islands 

of good biological activity? 

Fortunately, Genbank and 

other public databases provide 

very large datasets of naturally 

occurring sequences. As of 

June 2017, Genbank consists of 

approximately 250x10^9 base 

pairs, and whole genome shotgun 

submission (WGS) is almost an 

order of magnitude larger. Both 

of these are growing rapidly. 

The information provided by the 

genomic databases can be used 

as beacons to outline the contours 

of the small functional islands 

in the sequence space ocean. 

Similarly to how Google uses deep 

learning artificial intelligence 

(AI) to recognise images of cats 

by showing the AI millions of cat 

pictures, we can now show AI 

millions of gene/protein sequences 

derived from Genbank/WGS and 

use the resulting algorithm to tell 

us which non-natural sequences  

are likely to be correctly folded 

and look like a ‘real’ protein. By 

limiting the search for improved 

protein sequences to islands of 

‘real’ proteins, we can drastically 

improve the success rate of 

bioengineering.

The precise and qualitative 

nature of amino acid sequences, 

all the big data present in public 

databases and the ability to 

make any biological sequence 

using synthetic biology makes 

protein engineers uniquely 

positioned to apply machine 

learning. As early as 1993, Svante 

Wold and collaborators at Umeå 

University used partial least 

squares projections (PLS) to latent 

structures and synthetic 68bp DNA 

fragments to build a quantitative 

sequence-activity model to 

predict the SAR of Escherichia coli 
transcriptional promoters. The 

model was validated by two DNA 

fragments, which were predicted 

to be more potent promoters than 

any upon which the model was 

based. The optimised structures 

were experimentally verified to  

be strong promoters in vivo.

A few years later, scientists from 

Freie Universität Berlin applied 

a set of 90 related peptides as a 

training set to a neural network. 

The resulting algorithm correctly 

predicted whether new peptides 

would be active or not. Following 

on the nucleotide and peptide 

work, it was easy to see that 

proteins were next. Aita and 

Husimi from Saitama University 

in Japan published a series of 

papers in the late 1990s and early 

2000s that laid the foundation for 

sequence-activity relationship 

space exploration in proteins. 

The Japan team built SAR maps 

of dihydrofolate reductase, prolyl 

endopeptidase and several 

other enzymes. Consensus was 

building – the adoption of machine 

learning-driven navigational tools 

was going to transform the SAR of 

small molecules to the sequence-

activity relationship for protein 

engineering, but not quite yet.  

The cost and complexity of making 

synthetic genes, the limited size  

of big data and the lack of 

computational infrastructure 

for AI/machine learning would 

not yet make sequence-activity 

relationship for protein engineering 

the new gold standard. Today, that 

has all changed.

We are now living in exciting times, 

when the first generation protein 

pharmaceuticals (primarily regular 

antibodies that did not require 

much engineering) are rapidly 

being replaced by non-natural 

bifunctional antibodies, antibodies 

conjugated to small molecule 

drugs (ADC), those fused to 

cytokines, single chain antibodies 

and many other therapeutic 

protein formats that do not exist 

in nature. These new formats show 

incredible therapeutic potential, 

but are often limited by poor 

protein expression, instability, 

aggregation and many other 

developability features that are 

hard – if not impossible – to 

address by directed evolution or 

rational design. We will need all 

of the tools in our bioengineering 

tool chest to move these molecules 

from promising research papers  

to robust commercial drugs. 

The time for sequence-activity 

relationship is now.
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