Leap In Transposase Platform

How's it going? Where we are going ...

Antibody Engineering & Therapeutics

Oren Beske, Ph.D. obeske@atum.bio

Design of Experiment

Machine Learning

GPS platform

Test

The GPS Platform

gene GPS

vector GPS

protein GPS

ORF codon optimization

Expression vector element optimization

Protein attribute optimization

Leap-In Transposase[®] Platform

The life of a transposon-transposase pair

Perfect integration of elements between ITR's

1983 Nobel Prize in Physiology or Medicine

The life of a transposon-transposase pair

- Transient transposase = Stable insertion
- Single copy integrations at each site
- Multiple insertions (5 60+) across the genome
- Structural integrity maintained
- No size limitation

Consistent, uniform presentation of Leap-In® transgenes

- In-silico designed expression construct maintained at every integration site
- On average, functionality of each integration is comparable
 - Expression and product quality

ÊATUM

Transfection to RCB in ~10-12 weeks

Leap-In Transposase CLD Platform

- Expression construct integrity maintained
 - No concatemers, scrambling, deletions, etc.
 - Design in silico = structure in chromosome
- Rapid and robust pool generation
 - High titer predictive of clones $(5^+ g/L 10^+ g/L)$
 - Product quality predictive of clones (glycans, charge, etc.)
- Extremely stable clones
 - >90% of clones retain 100% of titer & copy number

Robust Market Adoption

- Offered as a service by ATUM: >70 projects delivered
- >30 active licensees: 11 of top 20 pharma
- 10 IND's filed in less than two years:
 - Seven IND's filed and accepted in US
 - One IND filed and accepted in China
 - Two IND's filed and accepted in EU

Moving Beyond the Routine

COVID-19 Response

• Chain ratio balancing for titer and product quality

• Reduction of target gene expression

Antibodies For COVID 19 Treatment

- Eleven candidate therapeutic mAb's
- Desire to initiate human trials ASAP
- Rapid progress: sequence to Ph.I
- Use cell pools for GMP manufacturing

Rapid Cell Line Development: Pools

- Two vector sets for each of 11 mAb's
- Create Leap-In Transposase[®] derived pools
- Freeze RCB's for transfer to CDMO
- Test expression in 10mL tube spin format

Transfection to RCB in ~10-12 weeks

COVID 19: ATUM Accelerated Timeline: 1

horizon

Selection in ~3 days

COVID 19: ATUM Accelerated Timeline: 1

COVID 19: ATUM Accelerated Timeline: 2

Rapid cGMP Manufacturing of COVID-19 monoclonal antibody using stable CHO cell pools

Rita Agostinetto¹, Jessica Dawson², Angela Lim², Mirva Hejjaoui-simoneau³, Cyril Boucher³, Bernhard Valldorf⁴, Adin Ross-gillespie³, Joseph Jardine⁵, Devin Sok⁵, Dennis Burton⁵, Thomas Hassell ⁶, Hervé Broly⁷, Wolf Palinsky³, Philippe Dupraz³, Mark Feinberg⁶, and Antu Dey⁸

¹Merck Serono SpA ²EMD Serono Biotech Center Inc ³Ares Trading SA ⁴Merck KGaA ⁵The Scripps Research Institute ⁶International Aids Vaccine Initiative ⁷Merck Serono SA-Corsier-sur-Vevey ⁸Greenlight Biosciences Inc Pools6.0 g/L↓Preclinical
Safety↓Preclinical
Safety↓Phase I

Preprint on Authorea.com

"... Enabled manufacturing of early clinical trial material within 4.5 months"

Beyond mAb's: 2-3 Chains and More

The "zoo" of bispecifics

Chain ratio balancing is key

Brinkmann and Kontermann; 2017

Considerations for chain ratio balancing

<u>Sequence</u>

- Codon choice
- mRNA 2° structure
- Poly-A signal
- 5'/3' UTR choice
- mRNA stability
- Ribosomal entry/processivity
- Splice site donor/acceptor
- Signal sequences
- Etc.

- Promoter choice
- Order of expression cassettes
- Number of expression cassettes
- Spacing of expression cassettes
- Directionality of expression cassettes
- Size of vectors
- Single vector or multiple vectors
- Choice of insulators
- Etc.

Controlling ratios with construct design: 2 ORFs

Construct number

Controlling ratios with construct design: 3 ORFs

Construct number

Case Study: 3-Chain Bispecific mAb

- 14 vector configurations
 - Varying expression levels
 - Varying expression ratios
- Leap In Transposase based pool selection
- Analytical assessment
 - Total titer
 - Chain expression: Relative and Amount
 - % Bispecific

Case Study: 3-Chain Bispecific mAb

Vector*	Expression Level [relative]		Expression Level
		(normalized)	
Α	comparable	1	med-low
В	comparable	1	low
С	significantly higher	1	low
D	moderately higher	1	high
E	comparable	1	high

* Subset of 14 vectors screened

Screening vectors at pool stage enables ID of high value pools

Case Study: 3-Chain BiSpecific mAb

Pool A

Pool and clone productivity

Pool*	derived clones*
0.9 [g/L]	up to 1.9 [g/L]

*Day 12 standard fed-batch

Pool E

Pool and clone productivity

Pool*	derived clones*
1.9 [g/L]	up to 5.5 [g/L]

*Day 12 standard fed-batch

Good pools predict good clones

The miLPN platform

Use Leap In Transposase platform to reduce gene expression

<u>miCHO-GS</u>

- K1 derived
- GS deficient
- GMP Cell Bank

<u>miFuc</u>

- Vector based
- Host cell agnostic
- Modify existing
 expression cell line

<u>milPN</u>

• Custom projects

The miLPN platform

Use Leap In Transposase platform to reduce gene expression

<u>miCHO-GS</u>

- K1 derived
- GS deficient
- GMP Cell Bank

<u>miFuc</u>

- Vector based
- Host cell agnostic
- Modify existing
 expression cell line

<u>milPN</u>

Custom projects

miFuc Platform: Overview

Transient:

Modified HEK host Modified CHO host

Stable:

Vector based approach Unmodified cell host Engineer existing cell line

Proof of concept stage: seeking early access partners

miFuc Platform: Overview

Transient:

Modified HEK host Modified CHO host

Stable:

Vector based approach Unmodified cell host Engineer existing cell line

Proof of concept stage: seeking early access partners

miFuc Platform: Stable Pools

miFuc Platform: Stable Pools

miFuc Platform: ADCC enhancement

CD16 Signaling (ADCC)

[mAb] (µg/mL)

miLPN Platform: Custom Project

<u>Overview</u>

Cytokine therapeutic Low expressor

Cytokine may inhibit expression/cell growth via interaction with endogenous CHO receptor

Use miLPN technology to reduce endogenous receptor expression on host cell

Leap In Transposase Platform

- From shiny and new to tried and true
 - Robust market adoption
 - Ten IND's in 2 years, >30 licensees, >70 projects
- Rapid COVID 19 response
 - Bulk selected pools for IND filing
- Chain expression ratio balancing
 - Increased titer and product quality
- miLPN technology to reduce gene expression
 - miCHO-GS, miFuc, miLPN receptor knock down

ATUM

- Gene synthesis, vectors
 - Large, complex, routine
 - 1000's to chose from
- Protein production
 - 96-well to multi-gram
 - mAbs to others
 - Mammalian, e. coli, other

- Protein analytics
 - MS, HPLC, other
 - Developability
- Cell based assays
 - FACS, signaling, other
 - Primary immune cells
- Protein Engineering

BATUM

Thank You

Oren Beske obeske@atum.bio

Partners:

Horizon Discovery Rentschler Biopharma Our Customers

Technology presented is protected by issued US patents 10435696, 10344285, 10287590, 10253321, 10233454, 10041077, 9771402, 9580697, 9574209, 9534234, 9428767, 9290552, 9102944, 9493521, 9206433, 8401798, 8975042, 8825411, 8635029, 8412461, 8158391, 8126653, 8005620, 7805252, 8323930, 7561973, 7561972 and pending applications

